Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.125
Filtrar
1.
Sci Total Environ ; : 172557, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643873

RESUMO

Currently, socioeconomic development and climate change pose new challenges to the assessment and management of terrestrial carbon storage (CS). Accurate prediction of future changes in land use and CS under different climate scenarios is of great significance for regional land use decision-making and carbon management. Taking the Yellow River Basin (YRB) in China as the study area, this study proposed a framework integrating the land use harmonization2 (LUH2) dataset, the patch-generating land use simulation (PLUS) model, and the integrated valuation of ecosystem services and trade-offs (InVEST) model. Under this framework, we systematically analyzed the spatiotemporal evolution characteristics of land use and their impact on CS in the YRB from 1992 to 2050. The results showed that (1) CS was highest in forestland and lowest in construction land, with a spatial distribution of high in the south and low in the north. From 1992 to 2020, construction land, forestland, and grassland increased while cropland decreased, reducing the total CS by 74.04 Tg. (2) From 2020 to 2050, under SSP1-2.6 scenario, forestland increased by 158.87 %; under SSP2-4.5 scenario, unused land decreased by 65.55 %; and under SSP5-8.5 scenario, construction land increased by 13.88 %. By 2050, SSP1-2.6 scenario exhibited the highest CS (8105.25 Tg), followed by SSP2-4.5 scenario (7363.61 Tg), and SSP5-8.5 scenario was the lowest (7315.86 Tg). (3) Forestland and construction land were the most critical factors affecting the CS. Shaanxi and Shanxi had the largest CS in all scenarios, and Qinghai had a huge carbon sink potential under SSP1-2.6 scenario. Scenario modeling demonstrated that future climate and land-use changes would have significant impacts on terrestrial CS in the YRB, and green development pathways could strongly contribute to meeting the dual­carbon target. Overall, this study provides a scientific basis for promoting low-carbon development, land-use optimization, and ecological civilization construction in YRB, China.

2.
Huan Jing Ke Xue ; 45(5): 2840-2847, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629546

RESUMO

Investigating the relationship of soil aggregate stability with the organic carbon in the aggregate and its response to land use change is conducive to the estimation of soil carbon sink potential, improvement of rocky desertification, and rational land use in karst areas of Southwest China. In order to explore the effects of land use change on the composition and stability of soil aggregate stability as well as the content of aggregate organic carbon, the soil (0-30 cm) of five land use types (secondary forest, pomelo forest, paddy field, pepper forest, and dry land) was selected as the research object. The characteristics and correlation of soil aggregate components and organic carbon under different land use patterns were obtained, and the contribution of soil aggregates to the change in organic carbon after land use change was calculated. The results showed that the macroaggregates in the surface soil (0-15 cm) of the secondary forest, pomelo forest, and paddy field were 63.32%, 52.38%, and 47.77%, respectively, which were significantly higher than that of dry land (23.70%), as was also seen in the lower layer (15-30 cm). The geometric mean diameter (GMD) and mean weight diameter (MWD) of soil aggregates in the secondary forest, pomelo forest, and paddy field were significantly higher than those in dry land. In the surface soil, the organic carbon of the secondary forest and paddy field was significantly higher than that of other land use patterns. By contrast, in the lower soil layer, only the organic carbon of the paddy field was significantly higher than that of the others. Under different land use patterns, the organic carbon content of aggregates followed the same order of macroaggregates > microaggregates > silt and clay, indicating that macroaggregates allowed soil organic carbon to accumulate, whereas silt and clay did the opposite. According to correlation analysis, the content of soil macroaggregates was significantly positively correlated with GMD, MWD, and soil aggregate organic carbon, suggesting that the increase in soil macroaggregates could improve the stability of soil aggregates and store more soil organic carbon. Further, as land use change may have significantly affected the soil aggregate, moderate development of forestry and paddy cultivation is suggested to improve the soil carbon sequestration potential in the karst area of Southwest China.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38568310

RESUMO

Rapid urbanisation has led to significant environmental and climatic changes worldwide, especially in urban heat islands where increased land surface temperature (LST) poses a major challenge to sustainable urban living. In the city of Abha in southwestern Saudi Arabia, a region experiencing rapid urban growth, the impact of such expansion on LST and the resulting microclimatic changes are still poorly understood. This study aims to explore the dynamics of urban sprawl and its direct impact on LST to provide important insights for urban planning and climate change mitigation strategies. Using the random forest (RF) algorithm optimised for land use and land cover (LULC) mapping, LULC models were derived that had an overall accuracy of 87.70%, 86.27% and 93.53% for 1990, 2000 and 2020, respectively. The mono-window algorithm facilitated the derivation of LST, while Markovian transition matrices and spatial linear regression models assessed LULC dynamics and LST trends. Notably, built-up areas grew from 69.40 km2 in 1990 to 338.74 km2 in 2020, while LST in urban areas showed a pronounced warming trend, with temperatures increasing from an average of 43.71 °C in 1990 to 50.46 °C in 2020. Six landscape fragmentation indices were then calculated for urban areas over three decades. The results show that the Largest Patch Index (LPI) increases from 22.78 in 1990 to 65.24 in 2020, and the number of patches (NP) escalates from 2,531 in 1990 to an impressive 10,710 in 2020. Further regression analyses highlighted the morphological changes in the cities and attributed almost 97% of the LST variability to these urban patch dynamics. In addition, water bodies showed a cooling trend with a temperature decrease from 33.76 °C in 2000 to 29.69 °C in 2020, suggesting an anthropogenic influence. The conclusion emphasises the urgent need for sustainable urban planning to counteract the warming trends associated with urban sprawl and promote climate resilience.

4.
Heliyon ; 10(7): e28798, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601680

RESUMO

Understanding the ecological, social, and economic values of protected areas, as well as assessing the services they provide to both humans and the environment is crucial for informing conservation policies and sustainable land management practices. Using the benefits transfer method, changes in ecosystem service values (ESVs) resulting from spatiotemporal land use dynamics were evaluated in the Alledighe Wildlife Reserve (AWR) spanning from 1998 to 2016. Five distinct habitat types, namely grassland, bushland, woodland, riverine forest, and highland forest, were identified across the landscape. The ESVs were estimated using regional and global ESV values. A decline in the extent of grassland, woodland, and riverine forests by 9.9%, 2.4%, and 1.5%, respectively, was observed while bushland and highland forests increased by 10.6% and 3.3%, respectively. The AWR experienced a loss of roughly 145 km2 of grassland habitat. Based on regional and global ESVs, total ESVs in the study area decreased by 28.18% from approximately US$ 180 million to approximately US$ 129 million, and by 40.85% from approximately US$ 496 million to approximately US$ 293 million. As per individual ESV assessment, the total ESV decreased by 41% from around US$ 374.5 million to US$ 264.8 million. Provisioning service declined by 41.6% from US$ 100 million to US$ 70.6 million. Regulating service declined by 42.5% from US$ 242.4 million to US$ 170 million. Supporting service declined by 67% from US$ 5.3 million to US$ 3.2 million, and cultural service decreased by 27.8% from US$ 26.7 million to US$ 20.8 million. The larger ESV change was contributed by the expansion of forestland and bushland across previously grassland-dominated areas. The results of this study could render the value of the rangeland more visible in the decision-making process, as well as provide valuable input for future planning and management interventions of the AWR's pristine rangeland, thereby enhancing ecosystem services and the livelihoods of the surrounding communities.

5.
Sci Total Environ ; 927: 172249, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593881

RESUMO

Ecological management zones (EMZs) are pivotal in improving the management of ecosystem services (ESs) and promoting sustainable regional development. In this study, we developed a comprehensive framework aimed at identifying EMZs and substantiating their efficacy through the amalgamation of historical evolutionary patterns and future trends. We applied this framework to Beijing, China, and selected five vital ESs for the study area namely, water yield (WY), carbon sequestration (CS), habitat quality (HQ), soil conservation (SC) and water purification (WP). The framework involves two key components. Firstly, the identification of EMZs is based on the historical evolution of five types of ESs and the dynamic assessment of ES bundles. Subsequently, it enables a simulation of various scenarios to predict future alterations in land use and ESs, thereby validating the effectiveness of the identified EMZs. Our findings reveal notable spatial heterogeneity among different ESs, and that CS, HQ, SC, and WP exhibited synergies, while WY and showed trade-offs with the remaining four types of ESs. Based on an analysis of ES bundle evolution trajectories, we identified four types of EMZs: ecological conservation zone, ecological restoration zone, ecological transition zone and sustainable construction zone. Through strategic EMZ planning, it becomes possible to augment the area of forestland and grassland, alleviate the contradiction between arable land and construction land, and enhance the supply of various ESs. The proposed framework not only offers a novel perspective on the scientific management of ESs but also furnishes decision-makers and planners with an intuitive understanding of the tangible benefits associated with EMZ planning.

6.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611477

RESUMO

Landscape changes based on spectral responses allow showing plant cover changes through diversity, composition, and ecological connectivity. The spatial and temporal vegetation dynamics of the Bijagual Massif from 1986 to 2021 were analyzed as a measure of ecological integrity, conservation, and territory. The covers identified were high open forest (Hof), dense grassland of non-wooded mainland (Dgnm), a mosaic of pastures and crops (Mpc), lagoons (Lag), and bare and degraded lands (Bdl). The Bijagual Massif has 8574.1 ha. In 1986, Dgnm occupied 42.6% of the total area, followed by Mpc (32.8%) and Hof (24.5%); by 2000, Mpc and Hof increased (43.7 and 28.1%, respectively), while Dgnm decreased (28%); by 2021, Dgnm was restricted to the northeastern zone and continued to decrease (25.2%), Mpc occupied 52.9%, Hof 21.7% and Bdl 0.1%. Of the three fractions of the connectivity probability index, only dPCintra and dPCflux contribute to ecological connectivity. Hof and Dgnm show patches with biota habitat quality and availability. Between 1986 and 2021, Dgnm lost 1489 ha (41%) and Hof 239.5 ha (11%). Mpc replaced various covers (1722.2 ha; 38%) in 2021. Bijagual has a valuable biodiversity potential limited by Mpc. Territorial planning and sustainable agroecological and ecotourism proposals are required due to the context of the ecosystems.

7.
Sci Rep ; 14(1): 9384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653994

RESUMO

Rapid urbanization is restructuring landscapes across sub-Saharan Africa. This study employed post-classification comparison of multi-temporal Landsat imagery to characterize land cover changes in Abakaliki Local Government Area, Ebonyi State, Nigeria between 2000 and 2022, addressing the need for empirical baselines to guide sustainable planning. Four classes were considered and images classified with overall accuracy of 95% for the year 2000 and 97% for the year 2022. Notably, 21,000 hectares of vegetation were lost, while built-up and bare land increased by 7500 and 13,700 hectares respectively. Spatial patterns revealed built-up encroachment from vegetation and bare land; this establishes the first standardized quantification of Abakaliki LGA's shifting landscape, with results supporting compact development models while conserving ecological services under ongoing transformations. The study makes a significant contribution by establishing an empirical baseline characterizing Nigeria's urbanization trajectory essential for evidence-based stewardship of regional resources and livelihoods in a period of accelerating change.

8.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592822

RESUMO

This study utilized the platform for ensemble forecasting of species distributions, biomod2, to predict and quantitatively analyze the distribution changes of Zelkova schneideriana Hand.-Mazz. under different climate scenarios (SSP1-2.6 and SSP5-8.5) based on climate and land-use data. This study evaluated the geographic range changes in future distribution areas and the results indicated that, under both SSP1-2.6 and SSP5-8.5 scenarios, the distribution area of Zelkova schneideriana would be reduced, showing a trend towards migration to higher latitudes and elevations. Particularly, in the more extreme SSP5-8.5 scenario, the contraction of the distribution area was more pronounced, accompanied by more significant migration characteristics. Furthermore, the ecological structure within the distribution area of Zelkova schneideriana also experienced significant changes, with an increasing degree of fragmentation. The variables of Bio6 (minimum temperature of the coldest month), Bio2 (mean diurnal temperature range), Bio15 (precipitation seasonality), and elevation exhibited important influences on the distribution of Zelkova schneideriana, with temperature being particularly significant. Changes in land use, especially the conversion of cropland, had a significant impact on the species' habitat. These research findings highlight the distributional pressures faced by Zelkova schneideriana in the future, emphasizing the crucial need for targeted conservation measures to protect this species and similar organisms.

9.
Plants (Basel) ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592872

RESUMO

The change in land use in the Brazilian Cerrado modifies the dynamics of soil organic matter (SOM) and, consequently, carbon (C) stocks and their fractions and soil enzyme activities. This study evaluated the effect of brachiaria (Brachiaria decumbens Stapf.) intercropped with Arabica coffee (Coffea arabica L.) on the stock and fractions of soil carbon and enzyme activities. The experiment was arranged in a completely randomized block design with three replications and treatments in a factorial design. The first factor consisted of coffee with or without intercropped brachiaria, the second of Arabica coffee cultivars ('I.P.R.103' and 'I.P.R.99') and the third factor of the point of soil sampling (under the canopy (UC) and in inter-rows (I)). Soil was sampled in layers of 0-10, 10-20, 20-30, 30-40, 40-60 and 60-80 cm. Soil from the 0-10 cm layer was also used to analyze enzymatic activity. Significant effects of coffee intercropped with brachiaria were confirmed for particulate organic carbon (POC), with highest contents in the 0-10 and 20-30 cm layers (9.62 and 6.48 g kg-1, respectively), and for soil enzymes (280.83 and 180.3 µg p-nitrophenol g-1 for arylsulfatase and ß-glucosidase, respectively).

10.
Glob Chang Biol ; 30(4): e17280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613249

RESUMO

Coastal wetlands play an important role in regulating atmospheric carbon dioxide (CO2) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands. The natural coastal wetlands have the average net ecosystem exchange of CO2 (NEE) of -577 g C m-2 year-1, with -821 g C m-2 year-1 for mangrove forests and -430 g C m-2 year-1 for salt marshes. There are pronounced latitudinal patterns for carbon dioxide exchange of natural coastal wetlands: NEE increased whereas gross primary production (GPP) and respiration of ecosystem decreased with increasing latitude. Distinct environmental factors drive annual variations of GPP between mangroves and salt marshes; temperature was the dominant controlling factor in salt marshes, while temperature, precipitation, and solar radiation were co-dominant in mangroves. Meanwhile, both anthropogenic reclamation and restoration had substantial effects on coastal wetland carbon fluxes, and the effect of the anthropogenic perturbation in mangroves was more extensive than that in salt marshes. Furthermore, from 1980 to 2020, anthropogenic reclamation of China's coastal wetlands caused a carbon loss of ~3720 Gg C, while the mangrove restoration project during the period of 2021-2025 may switch restored coastal wetlands from a carbon source to carbon sink with a net carbon gain of 73 Gg C. The comparison of carbon fluxes among these coastal wetlands can improve our understanding of how anthropogenic perturbation can affect the potentials of coastal blue carbon in China, which has implications for informing conservation and restoration strategies and efforts of coastal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Dióxido de Carbono , Ciclo do Carbono , China
11.
Geohealth ; 8(3): e2022GH000764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425366

RESUMO

Ecosystem change can profoundly affect human well-being and health, including through changes in exposure to vector-borne diseases. Deforestation has increased human exposure to mosquito vectors and malaria risk in Africa, but there is little understanding of how socioeconomic and ecological factors influence the relationship between deforestation and malaria risk. We examined these interrelationships in six sub-Saharan African countries using demographic and health survey data linked to remotely sensed environmental variables for 11,746 children under 5 years old. We found that the relationship between deforestation and malaria prevalence varies by wealth levels. Deforestation is associated with increased malaria prevalence in the poorest households, but there was not significantly increased malaria prevalence in the richest households, suggesting that deforestation has disproportionate negative health impacts on the poor. In poorer households, malaria prevalence was 27%-33% larger for one standard deviation increase in deforestation across urban and rural populations. Deforestation is also associated with increased malaria prevalence in regions where Anopheles gambiae and Anopheles funestus are dominant vectors, but not in areas of Anopheles arabiensis. These findings indicate that deforestation is an important driver of malaria risk among the world's most vulnerable children, and its impact depends critically on often-overlooked social and biological factors. An in-depth understanding of the links between ecosystems and human health is crucial in designing conservation policies that benefit people and the environment.

12.
Huan Jing Ke Xue ; 45(2): 961-973, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471934

RESUMO

Regional land use change is the main cause for the change in karst carbon storage. It is important to analyze the spatial and temporal evolution and future spatial distribution trends of carbon storage in typical counties in central Guizhou's karst region, such as Puding County, to improve regional carbon storage, optimize land ecological security patterns, and promote low-carbon sustainable urban development. The PLUS-InVEST model was coupled, based on the interpreted land use data and future land prediction, the spatial and temporal evolution characteristics of land use change and carbon storage in Puding County from 1973 to 2020 were inverted, and the spatial pattern evolution of land use and carbon storage change under different scenarios in 2060 were simulated and predicted. The results showed: ① from 1973 to 2020, the overall carbon storage in Puding County increased by 6.61×105 t, showing an upward trend. The spatial distribution showed a significant increase in the northeastern and southwestern parts of Puding County and a significant decrease in the south-central parts. The change was due to the increase in carbon storage in dryland to shrubland and forest land and the decrease in carbon storage in areas where paddy fields are converted to construction land. ② The land use change in Puding County in the historical period was mainly reflected in the continuous expansion of construction land and the increased fluctuation of the proportion of forest land and shrub forest land, and the change in land use in different scenarios projected in 2060 retained the change characteristics of the historical period. ③ In 2060, the carbon storage in Puding County under the scenarios of natural evolution, ecological protection, and economic development increased by 2.93×105, 5.40×105, and 1.11×105 t, respectively, compared with that in 2020. Of these, the increase in ecological protection scenarios was the most significant, with the transfer of dryland to shrubland being the main reason for the increase in regional carbon sequestration capacity. These results can serve as a scientific reference for land use management decisions and the formulation of emission reduction and sink increase policies in Puding County. The future land use planning of karst areas should be guided by the goal of "carbon neutrality" in 2060, take appropriate ecological protection measures, strictly control the rapid expansion of construction land to paddy fields, optimize the land use structure, and effectively improve the level of regional carbon storage.

13.
Environ Monit Assess ; 196(4): 356, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467961

RESUMO

This study investigates the major environmental and socio-economic impacts of an increase in the area of rubber plantations and the changing patterns of drivers of land use changes. Using a combination of geospatial techniques and socio-economic methods, we mainly analyzed the rate of increase in area under rubber plantations, the major impacts of land use changes, and the changing drivers of land use changes. Our results show that the area under rubber plantations has increased significantly within the study area, with the area under rubber plantations increasing from 30 to 74% of the total area within five decades. Impact assessment of land use changes based on household surveys showed significant improvement in the socio-economic conditions of the farmers, however, at the expense of severe environmental degradation. Our results also indicate that while areas under rubber plantations continue to increase, the drivers of land use changes have changed over time. Furthermore, it has been observed that in the past, many interventions prioritized social and economic development and placed less emphasis on the ecological stability of the region. Perceptions of farmers revealed that the effects of ecological fragility already affected the economic robustness of the whole area. Therefore, we conclude that government interventions to support additional rubber cultivation should also focus on ecosystem stabilization in order to minimize the risk of an ecological catastrophe that would significantly affect the economic prosperity of the region.


Assuntos
Ecossistema , Borracha , Agricultura , Monitoramento Ambiental , Índia , Conservação dos Recursos Naturais
14.
J Environ Manage ; 356: 120541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479280

RESUMO

A pressing challenge to global sustainability is meeting the escalating needs of a growing population while safeguarding land resources from degradation. In recent decades, China's rapid growth, expanding population, urban sprawl, and diminishing high-quality farmland have presented a compelling case suitable for exploring solutions and challenges related to this critical issue. Therefore, there is an urgent need for comprehensive and detailed information regarding land systems. Here, we developed the first fine-scale dataset of the China Land System at a spatial resolution of 1 km, covering the period from 2000 to 2015. By leveraging this comprehensive land information, we identified five primary types of land systems and their respective subsystems, thereby delineating distinct patterns of human-environmental interaction. Land system dynamics followed diverse developmental trajectories characterized by incremental shifts toward more functionally centralized systems. Land use intensification played a significant role in increasing the population capacity and food production in China, contributing nearly 93.94% and 84.99%, respectively. In contrast, land cover changes accounted for only 4.69% and 11.43%, respectively. These findings underscore the tendency of previous studies to overestimate the impact of land cover change and underestimate the influence of land use intensification in meeting the growing demands of land-based production. This study emphasizes the importance of transcending traditional land cover-based approaches and integrating land systems into land representation and global land change scenario simulations to promote sustainability.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Humanos , Fazendas , China
15.
J Environ Manage ; 357: 120704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555843

RESUMO

This paper assesses the French policy of mitigation hierarchy, with the aim of no net loss of biodiversity, by studying the geographical aspects of the application of the concept of ecological offsets in equivalence between losses and gains using spatialized data. We seek to know whether the dynamics of urban and interurban development (notably built-up and transport infrastructures) lead to a spatially integrated implementation of biodiversity offsets taking into account local characteristics and areas under pressure from land artificialization. Our main finding reveals that the majority of ecological offsets are generated by projects related to transport infrastructures (38%) and urban planning and construction projects (23%). However, if there are fewer, the ecological offsets of projects such as waste storage or energy development are mostly located in natural preserved areas, revealing a potential risk of non additionnality of offset measures and a risk that the private sector (through ecological offsets) will gradually replace the state in the protection of biodiversity. Our analysis also points out that despite the diversity of projects, habitats and protected species across France, there is a typical spatial layout profile of ecological offsets, pleading for a "one size fits all" offsetting in the French policy context of tenuous regulators' availability in time and competence level due to weakness of refresh training and downsizing of public services in the environment. This last result argues for a stronger control from environmental agencies between two tremendously tricky concepts of offsetting, the equivalence valuation methods and the adjustments coefficients (time delay and ecological risk), to drive ecological offsetting future decisions at local but above all regional- and national-level planning documents.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Cidades , Biodiversidade , França , Análise Espacial
16.
Sci Total Environ ; 926: 171850, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521255

RESUMO

Agriculture is expanding rapidly across the tropics. While cultivation can boost socioeconomic conditions and food security, it also threatens native ecosystems. Oil palm (Elaeis guineensis), which is grown pantropically, is the most productive vegetable oil crop worldwide. The impacts of oil palm cultivation have been studied extensively in Southeast Asia and - to a lesser extent - in Latin America but, in comparison, very little is known about its impacts in Africa: oil palm's native range, and where cultivation is expanding rapidly. In this paper, we introduce a large-scale research programme - the Sustainable Oil Palm in West Africa (SOPWA) Project - that is evaluating the relative ecological impacts of oil palm cultivation under traditional (i.e., by local people) and industrial (i.e., by a large-scale corporation) management in Liberia. Our paper is twofold in focus. First, we use systematic mapping to appraise the literature on oil palm research in an African context, assessing the geographic and disciplinary focus of existing research. We found 757 publications occurring in 36 African countries. Studies tended to focus on the impacts of palm oil consumption on human health and wellbeing. We found no research that has evaluated the whole-ecosystem (i.e., multiple taxa and ecosystem functions) impacts of oil palm cultivation in Africa, a knowledge gap which the SOPWA Project directly addresses. Second, we describe the SOPWA Project's study design and-using canopy cover, ground vegetation cover, and soil temperature data as a case study-demonstrate its utility for assessing differences between areas of rainforest and oil palm agriculture. We outline the socioecological data collected by the SOPWA Project to date and describe the potential for future research, to encourage new collaborations and additional similar projects of its kind in West Africa. Increased research in Africa is needed urgently to understand the combined ecological and sociocultural impacts of oil palm and other agriculture in this unique region. This will help to ensure long-term sustainability of the oil palm industry-and, indeed, all tropical agricultural activity-in Africa.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Óleos de Plantas , Agricultura , África Ocidental
17.
Environ Res ; 251(Pt 2): 118668, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467359

RESUMO

This study evaluated the potential effects of long-term land use and climate change on the quality of surface runoff and the health risks associated with it. The land use change projection 2030 was derived from the main changes in land use from 2009 to 2019, and rainfall data was obtained from the Long Ashton Research Station Weather Generator (LARS-WG) model. The Long-Term Hydrological Impact Assessment (L-THIA) model was then utilized to calculate the rate of runoff heavy metal (HM) pollutant loading from the urban catchment. It was found that areas with heavy development posed a significantly greater public health risk associated with runoff, with higher risks observed in high-development and traffic areas compared to industrial, residential, and commercial areas. Additionally, exposure to Lead (Pb), Mercury (Hg), and Arsenic (As) was found to contribute significantly to overall non-carcinogenic health risks for possible consumers of runoff. Carcinogenic risk values of As, Cadmium (Cd), and Pb were also observed to increase, particularly in high-development and traffic areas, by 2030. This investigation offers important insight into the health risks posed by metals present in surface runoff in urban catchment areas under different land use and climate change scenarios.

18.
Ying Yong Sheng Tai Xue Bao ; 35(2): 480-488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523106

RESUMO

The construction of urban ecological green wedges, which can mitigate the heat island effect through cooling and ventilation effects, is an important way to enhance the adaptation of cities to climate change. Dynamic monitoring and periodic assessment of both the conservation status and cooling effect of ecological green wedges is a key to ensure the heat mitigation benefits. Based on multi-source remote sensing data, we systematically analyzed the land use changes of six ecological green wedges in Wuhan in 2013 and 2020 using the methods of Markov transfer matrix, land use dynamics, and comprehensive index of land use degree, and evaluated the changes in surface temperature of the ecological green wedges and their cooling island effect. Results showed that the ecological green wedges in Wuhan generally had a large amount of construction land encroaching on ecological land from 2013 to 2020, with the water decreased the most. With the continuous deterioration of ecological green wedges, their land surface temperatures showed rising trends, together with significant weakening trends in cooling island effects. Among all the six wedges, the Dadonghu, Tangxun, and Wuhu exhibited relatively better ecological conservation, slighter land use change and lower overall development degree. Qinglinghu and Houguanhu demonstrated average levels of conservation. Fuhe experienced the most severe change under the significant influence of the westward policy of Wuhan City, with the proportion of water decreasing by 7.1%, warming up by 3.00 ℃, and the largest reduction in cooling distance for the cooling island effect, amounting to about 210 m. The results provided scientific evidence for the urban heat island mitigation-oriented planning and management of ecological green wedges for Wuhan City.


Assuntos
Temperatura Alta , Água , Cidades , Temperatura , China , Monitoramento Ambiental/métodos
19.
Sci Total Environ ; 923: 171603, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461996

RESUMO

This study aimed to determine the impact of land use/cover changes on the heavy metal content in the Sultan Marshland and surrounding area and assess the pollution status. 54 topsoil samples (0-20 cm) were collected from the Rangeland, Farmland, Scrubland, Southern Marshland, Northern Marshland, and Dry Lake areas. The heavy metal contents of the soil samples (Cr, Pb, Fe, Zn, Cu, Co, Mn, Cd, Mo, As, and Ni) were determined using ICP-MS and ICP-OES devices. The impact of land use/cover change on soil heavy metal content was evaluated using variance analysis, while differences between groups were identified using the Duncan test. Principal Component Analysis (PCA) was conducted to identify potential sources of heavy metals. The contamination status of the soils was evaluated based on land use/cover using the Contamination Factor (Cf), Pollution Load Index (PLI), Ecological Risk Factor (Er), and Potential Ecological Risk Index (PERI). Changes in land use/cover around the Sultan Marshlands affected heavy metal distribution of the soils except for Cd. Among all land use/cover types, Fe concentration was the highest in the soils, while Cd concentration was the lowest. Soils in Southern Marshland exhibited higher average concentrations of Cr, Fe, Zn, Co, Cu, and Ni compared to other land uses/covers. Farmlands and rangelands had higher concentrations of Cd, As and Pb. Land use/cover was ranked based on the total heavy metal load in the following order in terms of average values: Southern Marshland > Scrubland > Farmland > Rangeland > Northern Marshland > Dry Lake. According to Cf, the soils in the Dry Lake were exposed to considerable levels of As contamination. Based on PLI, half of the soil sampling points in the Southern Marshland soils showed a degradation in environmental quality. Er indicated that all land uses moderately polluted with Cd. According to the average PERI, all soils under different land use/cover types were categorized as having a low ecological risk. It was believed that heavy metals originated from both natural and human activities. To ensure the sustainability of the ecosystem and to mitigate the risk of heavy metal pollution entering the food chain, it is recommended to manage farming and mining activities and land use habits.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , China
20.
J Environ Manage ; 355: 120540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442658

RESUMO

This study presents a new method to incorporate the No Net Loss (NNL) principle within corporate Environmental, Social, and Governance (ESG) frameworks. This principle aims to ensure that biodiversity losses from human activities are fully offset. In this context, we tackle two main challenges: managing epistemic uncertainties in environmental modeling and accurately assessing compensatory areas needed to replace lost habitats. Focusing on Brazil's diverse biomes, which are undergoing rapid changes, we highlight the role of expert opinion surveys in addressing the uncertainties of the InVEST Habitat Quality, a model that simulates changes in landscape integrity under different land use scenarios. Our analysis across three of Brazil's regions - Caatinga Semi-arid, Cerrado Savanna, and Atlantic Forest - leverages open-source data to reveal substantial habitat losses due to activities like wind farm development, mining, and intensive agriculture, leading to a widespread decline in habitat quality. We introduce the Equivalent Biodiversity Area (EBA) metric to support NNL and Net Gain of Biodiversity efforts, measured in hectares. Findings show a reduction in EBA across all studied areas, highlighting the need for effective compensation strategies. Such strategies should merge Legal Reserves and ecological restoration into ESG policies, encourage landholder collaboration, and align with larger environmental efforts, such as watershed revitalization and Biodiversity Credits markets.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Brasil , Conservação dos Recursos Naturais/métodos , Biodiversidade , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...